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A signal 𝑓(𝑡) is regular if it can be locally approximated by a polynomial. 

𝑓 has a singularity at point 𝑣 if  it is not differentiable at 𝑣.

Taylor polynomial approximation:   𝑝𝑣 𝑡 = σ𝑘=0
𝑚−1 𝑓

(𝑘)

𝑘!
(𝑡 − 𝑣)𝑘

◆The Fourier transform analyses the global regularity of a function.

◆The wavelet transform makes it possible to analyze the pointwise

regularity of a function.
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Definition 6.1 (Lipschitz)    
◼ A function 𝑓 is pointwise Lipschitz 𝛼 ≥ 0 at 𝑣, if there exists 𝐾 > 0, 

and a polynomial 𝑝𝑣 of degree 𝑚 = 𝛼 such that  

∀𝑡 ∈ ℝ , 𝑓 𝑡 − 𝑝𝑣 𝑡 ≤ 𝐾 𝑡 − 𝑣 𝛼 . (6.3)

◼ A function 𝑓 is uniformly Lipschitz 𝛼 over 𝑎, 𝑏 if it satisfies (6.3) for 

all 𝑣 ∈ 𝑎, 𝑏 , with a constant 𝐾 that is independent of 𝑣.

◼ The Lipschitz regularity of 𝑓 at 𝑣 or over 𝑎, 𝑏 is the supremum of the 

𝛼 such 

that 𝑓 is Lipschitz 𝛼 .

◆ If 𝑓 is uniformly Lipschitz 𝛼 > 𝑚 in the neighborhood of 𝑣, then 𝑓 is

necessarily 𝑚 times continuously differentiable in this neighborhood

◆ If the Lipschitz regularity is 𝛼 < 1 at 𝑣, then 𝑓 is not differentiable at 𝑣
and 𝛼 characterizes the singularity type
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◆Theorem 6.1 gives a global regularity condition.

◆To get conditions on the local or even pointwise regularity of a signal, it

is necessary to use a transform which is localized in time.

Fourier condition

Theorem 6.1 A function 𝑓 is bounded and uniformly Lipschitz 𝛼 over

ℝ if

න
−∞

+∞
መ𝑓 𝜔 1 + 𝜔 𝛼 𝑑𝜔 < +∞

A function 𝑓 is bounded and 𝑝 times continuously differentiable with 

bounded derivatives if

න
−∞

+∞
መ𝑓 𝜔 1 + 𝜔 𝑝 𝑑𝜔 < +∞

This property is extended to Lipschitz regularity:
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Wavelet transform condition

𝑓 can be approximated with a polynomial 𝑝𝑣 in the neighborhood of 𝑣:

𝑓 𝑡 = 𝑝𝑣 𝑡 + 𝜀𝑣(𝑡) with 𝜀𝑣(𝑡) ≤ 𝐾 𝑡 − 𝑣 𝛼

Assume that the wavelet has 𝑛 > 𝛼 vanishing moments:

න
−∞

+∞

𝑡𝑘 𝜓 𝑡 𝑑𝑡 = 0 for 0 ≤ 𝑘 < 𝑛

A wavelet with 𝑛 vanishing moments is orthogonal to polynomials of degree 

𝑛 − 1. Since 𝛼 < 𝑛, the polynomial 𝑝𝑣 has degree at most 𝑛 − 1.

𝑡′ =
𝑡 − 𝑢

𝑠
𝑊𝑝𝑣 𝑢, 𝑠 = න

−∞

+∞

𝑝𝑣 𝑡
1

𝑠
𝜓

𝑡 − 𝑢

𝑠
𝑑𝑡 = 0 .

𝑓 = 𝑝𝑣 + 𝜀𝑣

𝑊𝑓 𝑢, 𝑠 = 𝑊𝜀𝑣 𝑢, 𝑠
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Theorem 6.2 A wavelet 𝜓 with a fast decay has 𝑛 vanishing moments if and

only if there exists 𝜃 with a fast decay such that

𝜓 𝑡 = −1 𝑛
𝑑𝑛𝜃 𝑡

𝑑𝑡𝑛
,

As a consequence

𝑊𝑓 𝑢, 𝑠 = 𝑠𝑛
𝑑𝑛

𝑑𝑢𝑛
𝑓 ⋆ ҧ𝜃𝑠 𝑢 ,

with ҧ𝜃𝑠 𝑡 =
1

𝑠
𝜃 −

𝑡

𝑠
. Moreover, 𝜓 has no more than 𝑛 vanishing

moments if and only if ∞−
+∞

𝜃 𝑡 𝑑𝑡 ≠ 0 .

𝜓 has a fast decay:  for any decay exponent 𝑚 ∈ ℕ there exists 𝐶𝑚 such that

∀𝑡 ∈ ℝ , |𝜓(𝑡)| ≤
𝐶𝑚

1 + 𝑡 𝑚

⚫ If 𝐾 = ∞−
+∞

𝜃 𝑡 𝑑𝑡 ≠ 0, then the convolution 𝑓 ⋆ ҧ𝜃𝑠 𝑡 can be interpreted as a 

weighted average of 𝑓 with a kernel dilated by 𝑠.  

⚫ 𝑊𝑓 𝑢, 𝑠 is an 𝑛th-order derivative of an averaging of 𝑓 over a domain 

proportional to 𝑠.
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 Wavelet transform 𝑊𝑓 𝑢, 𝑠
calculated with 𝜓 = −𝜃′

where 𝜃 is a Gaussian, for

the signal 𝑓 shown above.

 𝑊𝑓 𝑢, 𝑠 is the derivative

of 𝑓 averaged in the

neighborhood of 𝑢 with a

Gaussian kernel dilated by 𝑠.

 The position parameter 𝑢 and the scale 𝑠 vary respectively along the horizontal

and vertical axes. Black, grey and white points correspond respectively to

positive, zero and negative wavelet coefficients.

 Singularities create large amplitude coefficients in their cone of influence.
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◆The decay of the wavelet transform amplitude across scales is related to

the uniform and pointwise Lipschitz regularity of the signal. Measuring

this asymptotic decay is equivalent to zooming into signal structures

with a scale that goes to zero.

◆Suppose that the wavelet 𝜓 has 𝑛 vanishing moments and is 𝐶𝑛 with

derivatives that have a fast decay. This means that for any 0 ≤ 𝑘 ≤ 𝑛
and 𝑚 ∈ ℕ there exists 𝐶𝑚 such that

∀𝑡 ∈ ℝ , 𝜓 𝑘 𝑡 ≤
𝐶𝑚

1 + 𝑡 𝑚

Regularity measurements with wavelets
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Theorem 6.3 If 𝑓 ∈ 𝐋𝟐 ℝ is Lipschitz 𝛼 ≤ 𝑛 over 𝑎, 𝑏 , then there

exists 𝐴 > 0 such that

∀ 𝑢, 𝑠 ∈ 𝑎, 𝑏 × ℝ+ , 𝑊𝑓 𝑢, 𝑠 ≤ 𝐴𝑠𝛼+
1

2 (6.17)

Conversely, suppose that 𝑓 is bounded and that 𝑊𝑓(𝑢, 𝑠) satisfies

(6.17) for an 𝛼 < 𝑛 that is not an integer. Then 𝑓 is uniformly

Lipschitz 𝛼 on 𝛼 + 𝜀, 𝑏 − 𝜀 , for any 𝜀 > 0.

◆Theorem 6.3 relates the uniform Lipschitz regularity of 𝑓 on an

interval to the decay of its wavelet transform modulus at fine scales.
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Theorem 6.4 (Jaffard) If 𝑓 ∈ 𝐋𝟐 ℝ is Lipschitz 𝛼 ≤ 𝑛 at 𝑣, then there

exists 𝐴 such that

∀ 𝑢, 𝑠 ∈ ℝ × ℝ+ , 𝑊𝑓 𝑢, 𝑠 ≤ 𝐴𝑠𝛼+
1
2 1 +

𝑢 − 𝑣

𝑠

𝛼

Conversely, if 𝛼 < 𝑛 is not an integer and there exist 𝐴 and 𝛼′ < 𝛼

such that

∀ 𝑢, 𝑠 ∈ ℝ × ℝ+ , 𝑊𝑓 𝑢, 𝑠 ≤ 𝐴𝑠𝛼+
1
2 1 +

𝑢 − 𝑣

𝑠

𝛼′

then 𝑓 is Lipschitz 𝛼 at 𝑣.

◆Theorem 6.4 relates the pointwise Lipschitz regularity of 𝑓 to the

decay of its wavelet transform modulus at fine scales.

◆ It can be extended to an interval and to ℝ.
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Cone of influence

Suppose that 𝜓 has a compact support −𝐶, 𝐶 . The cone of influence of 𝑣 in 

the scale-space plane is the set of points (𝑢, 𝑠) such that 𝑣 is included in the 

support of 𝜓𝑢,𝑠 𝑡 = 𝑠−1/2𝜓 𝑡 − 𝑢 /𝑠

Since the support of 𝜓 𝑡 − 𝑢 /𝑠 is 𝑢 − 𝐶𝑠, 𝑢 + 𝐶𝑠 , the cone of influence 

of 𝑣 is:

𝑢 − 𝑣 ≤ 𝐶𝑠.
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Cone of influence

Suppose that 𝜓 has a compact support −𝐶, 𝐶 . The cone of influence of 𝑣 in 

the scale-space plane is the set of points (𝑢, 𝑠) such that 𝑣 is included in the 

support of 𝜓𝑢,𝑠 𝑡 = 𝑠−1/2𝜓 𝑡 − 𝑢 /𝑠

Since the support of 𝜓 𝑡 − 𝑢 /𝑠 is 𝑢 − 𝐶𝑠, 𝑢 + 𝐶𝑠 , the cone of influence 

of 𝑣 is:

𝑢 − 𝑣 ≤ 𝐶𝑠.

If 𝑢 is in the cone of influence of 𝑣, then 𝑊𝑓 𝑢, 𝑠 = 𝑓, 𝜓𝑢,𝑠 depends on the 

value of 𝑓 in the neighborhood of 𝑣. Since 
𝑢−𝑣

𝑠
≤ 𝐶, condition 𝑊𝑓 𝑢, 𝑠 ≤

𝐴𝑠𝛼+
1

2 1 +
𝑢−𝑣

𝑠

𝛼
given by theorem 6.4 can be written as:

𝑊𝑓(𝑢, 𝑠) ≤ 𝐴′𝑠𝛼+
1
2

which is identical to the uniform Lipschitz condition given by theorem 6.3:

𝑊𝑓 𝑢, 𝑠 ≤ 𝐴𝑠𝛼+
1
2
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Oscillating singularities

Consider (𝑢, 𝑠) outside of the cone of influence of 𝑣: 𝑢 − 𝑣 > 𝐶𝑠. To

control the oscillations of 𝑓 that might generate singularities, it is necessary

to impose the decay condition when 𝑢 tends to 𝑣:

𝑊𝑓(𝑢, 𝑠) ≤ 𝐴′𝑠𝛼−𝛼
′+1/2 𝑢 − 𝑣 𝛼

which guarantees that 𝑓 is Lipschitz 𝛼

⚫ Wavelet transform of

𝑓(𝑡) = sin(𝑎𝑡−1)
calculated with 𝜓 = −𝜃′,
where 𝜃 is a Gaussian.

⚫ High-amplitude coefficients

are along a parabola outside

the cone of influence of 𝑡 =
0.
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◆A wavelet modulus maximum is defined as a point 𝑢0, 𝑠0 such that

𝑊𝑓 𝑢, 𝑠0 is locally maximum at 𝑢 = 𝑢0. This implies that

𝜕𝑊𝑓 𝑢0, 𝑠0
𝜕𝑢

= 0 .

◆A connected curve 𝑠 𝑢 in the scale-space plane along which all points

are modulus maxima is called a maxima line

◆Theorem 6.2 proves that if 𝜓 has exactly 𝑛 vanishing moments and a

compact support, then there exists 𝜃 of compact support such that 𝜓 =

−1 𝑛𝜃 𝑛 with ∞−
+∞

𝜃 𝑡 𝑑𝑡 ≠ 0 .

The wavelet transform is thus a multiscale differential operator:

𝑊𝑓 𝑢, 𝑠 = 𝑠𝑛
𝑑𝑛

𝑑𝑢𝑛
𝑓 ⋆ ҧ𝜃𝑠 𝑢 .

Detection of singularities
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⚫ The convolution 𝑓 ⋆ ҧ𝜃𝑠 𝑢
averages 𝑓 over a domain

proportional to 𝑠.

⚫ If the wavelet has only one

vanishing moment: 𝜓 = −𝜃′, then

𝑊1𝑓 𝑢, 𝑠 = 𝑠
𝑑

𝑑𝑢
𝑓 ⋆ ҧ𝜃𝑠 𝑢 has

modulus maxima at sharp

variation points of 𝑓 ⋆ ҧ𝜃𝑠 (𝑢).

⚫ If the wavelet has two vanishing 

moments: 𝜓 = 𝜃′′, then the 

modulus maxima of  𝑊2𝑓 𝑢, 𝑠 =

𝑠2
𝑑2

𝑑𝑢2
𝑓 ⋆ ҧ𝜃𝑠 𝑢 correspond to 

locally maximum curvatures.
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Theorem 6.5 Suppose that 𝜓 is 𝐂𝑛 with a compact support, and 𝜓 =

−1 𝑛𝜃 𝑛 with ∞−
+∞

𝜃 𝑡 𝑑𝑡 ≠ 0. Let 𝑓 ∈ 𝐋𝟏 𝑎, 𝑏 . If there exists 𝑠0 > 0 such

that 𝑊𝑓(𝑢, 𝑠) has no local maximum for 𝑢 ∈ 𝑎, 𝑏 and 𝑠 < 𝑠0, then 𝑓 is

uniformly Lipschitz 𝑛 on 𝛼 + 𝜀, 𝑏 − 𝜀 , for any 𝜀 > 0.

Theorem 6.5 proves that if 𝑊𝑓(𝑢, 𝑠) has no modulus maxima at fine scales,

then 𝑓 is locally regular:

◆Theorem 6.5 implies that 𝑓 can be singular (not Lipschitz 1) at a point 𝑣 only

if there is a sequence of wavelet maxima points 𝑢𝑝, 𝑠𝑝 𝑝∈ℕ
that converges

toward 𝑣 at fine scales:

lim
𝑝→+∞

𝑢𝑝 = 𝑣 𝑎𝑛𝑑 lim
𝑝→+∞

𝑠𝑝 = 0

◆There cannot be a singularity without a local maximum of the wavelet

transform at the finer scales
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(a) Wavelet transform 𝑊𝑓(𝑢, 𝑠). The

horizontal and vertical axes give

respectively 𝑢 and log2𝑠.

(b) Modulus maxima of 𝑊𝑓 𝑢, 𝑠 .

⚫ All singularities are located by

following the maxima lines.

(a)

(b)
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Maxima propagation

◆For all 𝜓 = −1 𝑛𝜃 𝑛 , we are not guaranteed that a modulus maxima

located at 𝑢0, 𝑠0 belongs to a maxima line that propagates toward finer

scales. When 𝑠 decreases, 𝑊𝑓 𝑢, 𝑠 may have no more maxima in the

neighborhood of 𝑢 = 𝑢0

Theorem 6.6 proves that this is never the case if 𝜃 is a Gaussian:

Theorem 6.6 Let 𝜓 = −1 𝑛𝜃 𝑛 , where 𝜃 is a Gaussian. For any 𝑓 ∈

𝐋𝟐 ℝ , the modulus maxima of 𝑊𝑓(𝑢, 𝑠) belong to connected curves

that are never interrupted when the scale decreases.
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Isolated singularities

◆A wavelet transform may have a

sequence of local maxima that

converge to an abscissa 𝑣 even

though 𝑓 is regular at 𝑣.

◆To detect singularities it is not

sufficient to follow the wavelet

modulus maxima across scales

◆The decay rate of the modulus

maxima amplitude along the

curves indicate the order of the

isolated singularities (this a

consequence of theorems 6.3

and 6.5)

regular
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Suppose that for 𝑠 < 𝑠0 all wavelet modulus maxima that converge to 𝑣 are

included in a cone

𝑢 − 𝑣 ≤ 𝐶𝑠. (6.35)

This means that 𝑓 does not have oscillations that accelerate in the

neighborhood of 𝑣. The potential singularity at 𝑣 is necessarily isolated.

We can derive from Theorem 6.5 that the absence of maxima outside the cone

of influence implies that 𝑓 is uniformly Lipschitz 𝑛 in the neighborhood of

any 𝑡 ≠ 𝑣 with 𝑡 ∈ 𝑣 − 𝐶𝑠0, 𝑣 + 𝐶𝑠0

Theorem 6.5 Suppose that 𝜓 is 𝐂𝑛 with a compact support, and 𝜓 =

−1 𝑛𝜃 𝑛 with ∞−
+∞

𝜃 𝑡 𝑑𝑡 ≠ 0. Let 𝑓 ∈ 𝐋𝟏 𝑎, 𝑏 . If there exists 𝑠0 > 0

such that 𝑊𝑓(𝑢, 𝑠) has no local maximum for 𝑢 ∈ 𝑎, 𝑏 and 𝑠 < 𝑠0, then 𝑓

is uniformly Lipschitz 𝑛 on 𝛼 + 𝜀, 𝑏 − 𝜀 , for any 𝜀 > 0.
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Suppose that for 𝑠 < 𝑠0 all wavelet modulus maxima that converge to 𝑣 are included in a cone

𝑢 − 𝑣 ≤ 𝐶𝑠. (6.35)

This means that 𝑓 does not have oscillations that accelerate in the neighborhood of 𝑣. The

potential singularity at 𝑣 is necessarily isolated.

We can derive from Theorem 6.5 that the absence of maxima outside the cone of influence

implies that 𝑓 is uniformly Lipschitz 𝑛 in the neighborhood of any 𝑡 ≠ 𝑣 with 𝑡 ∈ (
)

𝑣 − 𝐶𝑠0, 𝑣 +
𝐶𝑠0

Theorem 6.3 implies that 𝑓 is uniformly Lipschitz 𝛼 in the neighborhood of 𝑣 if and only if there

exists 𝐴 > 0 such that each modulus maximum 𝑢, 𝑠 in the cone (6.35) satisfies

𝑊𝑓 𝑢, 𝑠 ≤ 𝐴𝑠𝛼+
1
2

Theorem 6.3 If 𝑓 ∈ 𝐋𝟐 ℝ is Lipschitz 𝛼 ≤ 𝑛 over 𝑎, 𝑏 , then there exists 𝐴 > 0 such that

∀ 𝑢, 𝑠 ∈ 𝑎, 𝑏 × ℝ+ , 𝑊𝑓 𝑢, 𝑠 ≤ 𝐴𝑠𝛼+
1

2 (6.17)

Conversely, suppose that 𝑓 is bounded and that 𝑊𝑓(𝑢, 𝑠) satisfies (6.17) for an 𝛼 < 𝑛 that is

not an integer. Then 𝑓 is uniformly Lipschitz 𝛼 on 𝛼 + 𝜀, 𝑏 − 𝜀 , for any 𝜀 > 0.
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Suppose that for 𝑠 < 𝑠0 all wavelet modulus maxima that converge to 𝑣 are included in a cone

𝑢 − 𝑣 ≤ 𝐶𝑠. (6.35)

This means that 𝑓 does not have oscillations that accelerate in the neighborhood of 𝑣. The

potential singularity at 𝑣 is necessarily isolated.

We can derive from Theorem 6.5 that the absence of maxima outside the cone of influence

implies that 𝑓 is uniformly Lipschitz 𝑛 in the neighborhood of any 𝑡 ≠ 𝑣 with 𝑡 ∈ (
)

𝑣 − 𝐶𝑠0, 𝑣 +
𝐶𝑠0

Theorem 6.3 implies that 𝑓 is uniformly Lipschitz 𝛼 in the neighborhood of 𝑣 if and only if there

exists 𝐴 > 0 such that each modulus maximum 𝑢, 𝑠 in the cone (6.35) satisfies

𝑊𝑓 𝑢, 𝑠 ≤ 𝐴𝑠𝛼+
1
2

which is equivalent to

log2 𝑊𝑓 𝑢, 𝑠 ≤ log2 𝐴 + 𝛼 +
1

2
log2 𝑠

Thus, the Lipschitz regularity at 𝑣 is the maximum slope of log2 𝑊𝑓 𝑢, 𝑠 as a function of

log2 𝑠 along the maxima lines converging to 𝑣.
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(c) The full line gives the decay of

log2|𝑊𝑓(𝑢, 𝑠)| as a function of log2𝑠
along the maxima line that converges

to the abscissa 𝑡 = 0.05. The dashed

line gives log2|𝑊𝑓(𝑢, 𝑠)| along the left

maxima line that converges to 𝑡 =
0.42.

◆ For 𝑡 = 0.05 , the slope is α +
1/2 ≈ 1/2, the signal is Lipschitz

0, it has a discontinuity. For 𝑡 =
0.42 , the slope is close to α +
1/2 ≈ 1, which indicates that the

signal is Lipschitz 1/2.

(a)

(b)

(c)

Isolated singularities
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Smoothed singularities

The signal may have important variations that are infinitely continuously

differentiable, e.g., at the border of a shadow the gray level of an image varies

quickly but is not discontinuous because of the diffraction effect.

The smoothness of these transitions is modeled as a diffusion with a Gaussian

kernel that has a variance measured from the decay of wavelet modulus maxima.

In the neighborhood of a sharp transition at 𝑣, suppose that:

𝑓 𝑡 = 𝑓0 ⋆ 𝑔𝜎 𝑡 , 𝑔𝜎 𝑡 =
1

𝜎 2𝜋
𝑒
−
𝑡2

2𝜎2

If 𝑓0 has a Lipschitz 𝛼 singularity at 𝑣 that is isolated and nonoscillating, it is

uniformly Lipschitz 𝛼 in the neighborhood of 𝑣 . For wavelets that are

derivatives of Gaussians, Theorem 6.7 relates the decay of the wavelet

transform to 𝜎 and 𝛼:

Theorem 6.7 Let 𝜓 = −1 𝑛𝜃 𝑛 with 𝜃 𝑡 = 𝜆𝑒
−

𝑡2

2𝛽2 . If 𝑓 = 𝑓0 ⋆ 𝑔𝜎 and 𝑓0

uniformly Lipschitz 𝛼 on 𝑣 − ℎ, 𝑣 + ℎ , then there exists 𝐴 such that

∀ 𝑢, 𝑠 ∈ 𝑣 − ℎ, 𝑣 + ℎ × ℝ+, 𝑊𝑓 𝑢, 𝑠 ≤ 𝐴𝑠𝛼+
1
2 1 +

𝜎2

𝛽2𝑠2

−
𝑛−𝛼
2
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Smoothed singularities

Theorem 6.7 explains how the wavelet transform decay relates to the

amount of diffusion of a singularity at 𝑣:

◆At large scales 𝑠 ≫
𝜎

𝛽
, the Gaussian averaging is not “felt” by the

wavelet transform that decays like 𝑠𝛼+
1

2.

◆For 𝑠 ≤
𝜎

𝛽
, the variation of 𝑓 at 𝑣 is not sharp relative to 𝑠 because of the

Gaussian averaging. At these fine scales, the wavelet transform decays

like 𝑠𝑛+
1

2 because 𝑓 is 𝐶∞

Theorem 6.7 Let 𝜓 = −1 𝑛𝜃 𝑛 with 𝜃 𝑡 = 𝜆𝑒
−

𝑡2

2𝛽2 . If 𝑓 = 𝑓0 ⋆ 𝑔𝜎 and 𝑓0

uniformly Lipschitz 𝛼 on 𝑣 − ℎ, 𝑣 + ℎ , then there exists 𝐴 such that

∀ 𝑢, 𝑠 ∈ 𝑣 − ℎ, 𝑣 + ℎ × ℝ+, 𝑊𝑓 𝑢, 𝑠 ≤ 𝐴𝑠𝛼+
1
2 1 +

𝜎2

𝛽2𝑠2

−
𝑛−𝛼
2
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Smoothed singularities

(a) Wavelet transform 𝑊𝑓(𝑢, 𝑠). 

(b) Modulus maxima of a wavelet 

transform computed 𝜓 = 𝜃′′, where 

θ is a Gaussian with variance 𝛽 = 1. 

(c)  Decay of log2|𝑊𝑓(𝑢, 𝑠)| along 

maxima curves. The diffusion at 𝑡 =
0.12 and 𝑡 = 0.55 modifies the 

decay for  𝑠 ≤ 𝜎 = 2−5.

(a)

(b)

𝑡 = 0.81

𝑡 = 0.12

𝑡 = 0.38

𝑡 = 0.55

(c)



Wavelet zoom

Dyadic maxima representation

◆Wavelet transform maxima carry the properties of sharp signal transitions

and singularities. By recovering a signal approximation from these maxima,

signal singularities can be modified or removed by processing the wavelet

modulus maxima

◆For fast numerical computations, the detection of wavelet transform maxima

is limited to dyadic scales 2𝑗
𝑗∈ℤ

. Suppose that 𝜓 is a dyadic wavelet,

which means that there exist 𝐴 > 0 and 𝐵 such that

∀𝜔 ∈ ℝ − 0 , 𝐴 ≤ 

𝑗=−∞

+∞

𝜓 2𝑗𝜔
2
≤ 𝐵

◆This dyadic wavelet transform has the same properties as a continuous

wavelet transform 𝑊𝑓 𝑢, 𝑠 . Singularities create sequence of maxima that

converge toward the corresponding location at fine scales, and the Lipschitz

regularity is calculated from the decay of the maxima amplitude.
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Scale-space maxima support

Mallat and Zhong introduced a dyadic wavelet maxima representation with a scale-

space approximation support Λ of modulus maxima 𝑢, 2𝑗 of 𝑊𝑓

Wavelet maxima can be interpreted as points of 0 or 𝜋 phase for an approximate

wavelet transform. Let 𝜓′ be the derivative of 𝜓 and 𝜓
𝑢,2𝑗
′ 𝑡 = 2−𝑗/2𝜓′ 2−𝑗 𝑡 − 𝑢 .

If 𝑊𝑓 has a local extremum at 𝑢0, then

𝜕𝑊𝑓 𝑢0, 2
𝑗

𝜕𝑢
= −2−𝑗 𝑓, 𝜓

2𝑗,𝑢0

′ = 0

For a complex wavelet wavelet 𝜓𝑐 𝑡 = 𝜓 𝑡 + 𝑖𝜓′ 𝑡 . If 𝑢, 𝑠 ∈ Λ , then the resulting

complex wavelet transform value is

𝑊𝑐𝑓 𝑢, 2𝑗 = 𝑓,𝜓
2𝑗,𝑢
𝑐 = 𝑓,𝜓

2𝑗,𝑢
+ 𝑖 𝑓, 𝜓

2𝑗,𝑢
′ = 𝑊𝑓 𝑢, 𝑠

because 𝑓, 𝜓
2𝑗,𝑢
′ = 0. The complex wavelet value 𝑊𝑐𝑓 𝑢, 𝑠 has a phase equal to 0 or

𝜋.
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(a)

(b)

(c)

(a) Intensity variation along one row of the Lena image.

(b) Dyadic wavelet transform computed at all scales

2𝑁−1 ≤ 2𝑗 ≤ 1, with the quadratic spline wavelet 𝜓 =
− 𝜃′.
(c) Modulus maxima of the dyadic wavelet

transform.

This adaptive sampling of 𝑢 produces a translation-

invariant representation. When 𝑓 is translated by 𝜏 each

𝑊𝑓 2𝑗 , 𝑢 is translated by 𝜏, so the maxima support is

translated by 𝜏:

If 𝑓𝜏 𝑡 = 𝑓(𝑡 − 𝜏) then 𝑊𝑓𝜏(𝑢, 𝑎
𝑗) = 𝑊𝑓(𝑢 −

𝜏, 𝑎𝑗). Uniformly sampling 𝑊𝑓𝜏(𝑢, 𝑎
𝑗) and 𝑊𝑓(𝑢, 𝑎𝑗)

at 𝑢 = 𝑛𝑎𝑗𝑢0 may yield very different values if 𝜏 ≠
𝑘𝑎𝑗𝑢0.
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Approximation from wavelet maxima

◆The continuous wavelet transform detects isolated singularities with their

order of singularity. The regular part of the signal is coded in its coarsest

approximation. We can reconstruct a signal from this coarse resolution and

from its wavelet modulus maxima.

◆Numerical experiments show that dyadic wavelets of compact support

recover signal approximations with a relative mean square error smaller than

10−2. On images, the difference is not visible.

◆For general dyadic wavelets, Meyer and Berman have proved that the

representation by dyadic maxima is not complete because several signals

may exhibit the same wavelet maxima.
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Approximation from wavelet maxima

The reconstruction of a signal from the values and scale-space locations of its

wavelet modulus maxima, we can compute an orthogonal projection of 𝑓 on

the space generated by the complex wavelets 𝜓
𝑢,2𝑗
𝑐

𝑢,2𝑗 ∈Λ
.

This orthogonal projection is obtained from the dual frame ෨𝜓𝑢,2𝑗 𝑢,2𝑗 ∈Λ
of

𝜓𝑢,2𝑗 𝑢,2𝑗 ∈Λ
in 𝐕Λ:

𝑓Λ = 

𝑢,2𝑗 ∈Λ

𝑓, 𝜓
𝑢,2𝑗

෨𝜓𝑢,2𝑗

The dual-synthesis algorithm computes this orthogonal projection by inverting

a symmetric operator 𝐿 in 𝐕Λ:

𝐿𝑦 = 

𝑢,2𝑗 ∈Λ

𝑦, 𝜓
𝑢,2𝑗

𝜓𝑢,2𝑗 ,

with a conjugate gradient algorithm. Indeed 𝑓Λ = 𝐿−1 𝐿𝑓
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Approximation from wavelet maxima

◆The blue line shows the approximation 𝑓Λ of the original signal 𝑓, recovered

from the dyadic wavelet maxima.

◆The red line shows the approximation recovered from 50% of the wavelet

maxima that have the largest amplitude. Sharp signal transitions

corresponding to large wavelet maxima have not been affected, but small

texture variations disappear because the corresponding maxima are removed.

The resulting signal is piecewise regular



Wavelet Zoom

• Lipschitz Regularity

• Wavelet Transform Modulus Maxima

• Multiscale Edge Detection

• Multifractals
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Multiscale edge detection

In images, what is most often perceived as an edge is a curve across which there is a

sharp variation of brightness. To make things simpler, the image will be assumed to be

monochrome. While the actual concept of an edge is more involved and depends in

particular on a priori knowledge about the featured objects, this presentation has the

advantage of leading to a precise mathematical definition of an "edge point".

The method of multiscale Canny edge detector is equivalent to detecting modulus

maxima in a two-dimensional dyadic wavelet transform

⚫ The scale-space support of these modulus maxima correspond to multiscale edges.

⚫ The Lipschitz regularity of edge points is derived from the decay of wavelet modulus

maxima across scales

⚫ Image approximations are recovered with an orthogonal projection on the wavelets

of the modulus maxima support

Thus, image-processing algorithms can be implemented on multiscale edges.
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Canny edge detection

The canny algorithm detects points of sharp variation in an image 𝑓 𝑥1, 𝑥2 by

calculating the modulus of its gradient vector

𝛻𝑓 =
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2

The partial derivative of 𝑓 in the direction of a unit vector 𝑛 = cos𝛼 , sin 𝛼 in the 𝑥 =
𝑥1, 𝑥2 plane is calculated as an inner product with the gradient vector

𝜕𝑓

𝜕𝑛
= 𝛻𝑓 ∙ 𝑛 =

𝜕𝑓

𝜕𝑥1
cos𝛼 +

𝜕𝑓

𝜕𝑥2
sin 𝛼

The absolute value of this derivative is maximum if 𝑛 is colinear to 𝛻𝑓. 𝛻𝑓 𝑥 is

parallel to the direction of maximum change of the surface 𝑓 𝑥 .

A point 𝑦 ∈ ℝ2 is defined as an edge if 𝛻𝑓 𝑥 is locally maximum at 𝑥 = 𝑦 when 𝑥 =

𝑦 + 𝜆𝛻𝑓 𝑦 and 𝜆 is small enough. These edge points are inflection points of 𝑓.
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A multiscale version of canny edge detector is implemented by smoothing the surface

with a convolution kernel 𝜃 𝑥 . Consider two dimensional wavelets defined by partial

derivatives of 𝜃:

𝜓1 = −
𝜕𝜃

𝜕𝑥1
and 𝜓2 = −

𝜕𝜃

𝜕𝑥2

The scale varies along the dyadic sequence 2𝑗
𝑗∈ℤ

. Let 𝑥 = 𝑥1, 𝑥2 , 1 ≤ 𝑘 ≤ 2

𝜓
2𝑗
𝑘 𝑥1, 𝑥2 =

1

2𝑗
𝜓𝑘

𝑥1
2𝑗
,
𝑥2
2𝑗

and ത𝜓
2𝑗
𝑘 𝑥 = 𝜓

2𝑗
𝑘 −𝑥

The dyadic wavelet transform at 𝑢 = 𝑢1, 𝑢2 is

𝑊𝑘𝑓 𝑢, 2𝑗 = 𝑓 𝑥 , 𝜓
2𝑗
𝑘 𝑥 − 𝑢 = 𝑓 ⋆ ത𝜓

2𝑗
𝑘 𝑢

Let 𝜃2𝑗 𝑥 = 2−𝑗𝜃 2−𝑗𝑥 and ҧ𝜃2𝑗 𝑥 = 𝜃2𝑗 −𝑥

The wavelet transform components are proportional to the gradient of 𝑓 smoothed by ҧ𝜃2𝑗:

𝑊1𝑓 𝑢, 2𝑗

𝑊2𝑓 𝑢, 2𝑗
= 2𝑗

𝜕
𝜕𝑢1

𝑓 ⋆ ҧ𝜃2𝑗 𝑢

𝜕
𝜕𝑢2

𝑓 ⋆ ҧ𝜃2𝑗 𝑢
= 2𝑗𝛻 𝑓 ⋆ ҧ𝜃2𝑗 𝑢
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The modulus of this gradient vector is proportional to the wavelet transform modulus:

𝑀𝑓 𝑢, 2𝑗 = 𝑊1𝑓 𝑢, 2𝑗 2 + 𝑊2𝑓 𝑢, 2𝑗 2

The angle 𝐴𝑓 𝑢, 2𝑗 of the wavelet transform vector:

𝐴𝑓 𝑢, 2𝑗 = ቐ
𝛼 𝑢 if 𝑊1𝑓 𝑢, 2𝑗 ≥ 0

𝜋 + 𝛼 𝑢 if 𝑊1𝑓 𝑢, 2𝑗 ≥ 0
𝑎 𝑢 = tan−1

𝑊2𝑓 𝑢, 2𝑗

𝑊1𝑓 𝑢, 2𝑗

𝑛𝑗 𝑢 = cos𝐴𝑓 𝑢, 2𝑗 , sin 𝐴𝑓 𝑢, 2𝑗

An edge point 𝑣 at the scale 2𝑗 :

𝑀𝑓 𝑢, 2𝑗 is locally maximum at 𝑢 = 𝑣 when 𝑢 = 𝑣 + 𝜆𝑛𝑗 𝑣 and 𝜆 small enough.

These points are also called wavelet transform modulus maxima.
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◼ The original image is on top

◼ The wavelet transform has a scale 

2𝑗 −6 ≤ 𝑗 ≤ 0 that increases 

from top to bottom

Horizontal

wavelet

transform

𝑊1𝑓 𝑢, 2𝑗

Vertical 

wavelet 

transform

𝑊2𝑓 𝑢, 2𝑗

Wavelet 

transform 

modulus

Wavelet 

transform 

angle for a 

non zero 

modulus

Wavelet 

transform 

modulus 

maxima
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Maxima curves

◆Edge points are distributed along curves that often correspond to the

boundary of important structures. Individual wavelet modulus maxima are

chained together to form a maxima curve that follows an edge

◆At any location, the tangent of the edge curve is approximated by computing

the tangent of a level set. This tangent direction is used to chain wavelet

maxima that are along the same edge curve

The level sets of 𝑔 𝑥 are the curves 𝑥 𝑠 in the 𝑥1, 𝑥2 plane where 𝑔 𝑥 𝑠

is constant. 𝑠 is the arc-length of the level set. Let Ԧ𝜏 = 𝜏1, 𝜏2 be the direction

of the tangent of 𝑥 𝑠 . Since 𝑔 𝑥 𝑠 is constant when 𝑠 varies:

𝜕𝑔 𝑥 𝑠

𝜕𝑠
=

𝜕𝑔

𝜕𝑥1
𝜏1 +

𝜕𝑔

𝜕𝑥2
𝜏2 = 𝛻𝑔 ∙ Ԧ𝜏 = 0

𝛻𝑔 𝑥 is perpendicular to the direction Ԧ𝜏 of the tangent of the level set that

goes through 𝑥.
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Maxima curves

◆ The level set property applied to 𝑔 =
𝑓 ⋆ ҧ𝜃2𝑗 proves that at a maximum

point 𝑣 the vector 𝑛𝑗 𝑣 of angle

𝐴𝑓 𝑣, 2𝑗 is perpendicular to the

level set of 𝑓 ⋆ ҧ𝜃2𝑗 going through 𝑣.

◆ If the intensity profile remains

constant along an edge, then the

inflection points (maxima points) are

along a level set. The intensity profile

of an edge may not be constant but its

variations are often negligible over a

neighborhood of size 2𝑗 for a

sufficiently small scale 2𝑗 . The

tangent of the maxima curve is then

nearly perpendicular to 𝑛𝑗 𝑣

𝑣

𝑛𝑗 𝑣
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◼ The wavelet transform has

a scale 2𝑗 −7 ≤ 𝑗 ≤ −3
that increases from top to

bottom

◼ Some edges disappear

when the scale increases.

These correspond to fine-

scale intensity variations

that are removed by the

average of ҧ𝜃2𝑗 when 2𝑗 is

large. The averaging also

modifies the position of the

remaining edges.
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Reconstruction from edges

Image approximations can be computed by projecting the image on the space generated

by wavelets on the modulus maxima support

Let Λ be the set of all modulus maxima points 𝑢, 2𝑗 , 𝑛 is the unit vector in the direction

of 𝐴𝑓 𝑢, 2𝑗 and

𝜓
𝑢,2𝑗
3 𝑥 = 22𝑗

𝜕2𝜃2𝑗 𝑥 − 𝑢

𝜕𝑛2

Since the wavelet transform modulus 𝑀𝑓 𝑢, 2𝑗 has a local extremum at 𝑢 in the

direction of 𝑛 ∶

𝑓, 𝜓
𝑢,2𝑗
3 = 0

A modulus maxima representation provides the set of inner products

𝑓, 𝜓
𝑢,2𝑗
𝑘

𝑢,2𝑗 ∈Λ,1≤𝑘≤3
. A modulus maxima approximation 𝑓Λ can be computed as an

orthogonal projection of 𝑓 on the space generated by the family of maxima wavelets

𝜓
𝑢,2𝑗
𝑘

𝑢,2𝑗 ∈Λ,1≤𝑘≤3
.
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Reconstruction from edges

A modulus maxima approximation 𝑓Λ can be computed as an orthogonal projection of 𝑓

on the space generated by the family of maxima wavelets 𝜓
𝑢,2𝑗
𝑘

𝑢,2𝑗 ∈Λ,1≤𝑘≤3
.

The dual-synthesis algorithm computes this orthogonal projection by inverting a

symmetric operator 𝐿 in 𝐕Λ:

𝐿𝑦 = 

𝑢,2𝑗 ∈Λ



𝑘=1

2

𝑦, 𝜓
𝑢,2𝑗
𝑘 𝜓

𝑢,2𝑗
𝑘 ,

with a conjugate gradient algorithm. Indeed 𝑓Λ = 𝐿−1 𝐿𝑓 .

When keeping all modulus maxima, the resulting approximation 𝑓Λ satisfies 𝑓Λ − 𝑓 /
𝑓 ≤ 10−2.

Singularities and edges are nearly perfectly recovered and no spurious oscillations are

introduced. The image differ slightly in smooth regions, but visually this is not noticeable.
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Reconstruction from edges

Reconstruction from thresholded

modulus maxima and coarse

approximation. The thresholding

accounts for the disappearance of

image structures. Sharp image

variations are recovered

Original Lena image Reconstruction from modulus 

maxima and coarse approximation
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Denoising by multiscale edge thresholding

◆ Multiscale edge representations can be used to reduce additive noise. Noise can be

removed by thresholding multiscale wavelet maxima, while taking into account their

geometric properties. The following example chains the maxima into curves that are

thresholded as a block:

Noisy peppers image

Peppers image restored

from the thresholding

maxima chains

Wavelet maxima support of the noisy

image, the scale increases from left to

right, from 2−7 to 2−5

Maxima support computed with a

thresholding selection of the maxima

chains

Edges are well-recovered visually but

textures and fine structures are removed,

producing a cartoonlike image
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Illusory contours

◆ It is rare that an image line has no hole in it. The brain compensate these

defaults using more elaborate image analysis.

◆Closing edge curves and understanding illusory contours requires

computational models that are not as local as multiscale differential operators.

Such contours can be obtained as the solution of a global optimization that

incorporates constraints on the regularity of contours and takes into account

the existence of occlusions.

The illusory edges of a straight and

a curved triangle are perceived in

domains where the images are

uniformly white.
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• Lipschitz Regularity

• Wavelet Transform Modulus Maxima

• Multiscale Edge Detection

• Multifractals
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◆Signals that are singular at almost every point were originally studied as

pathological objects of pure mathematical interest. Such phenomena are

encountered everywhere.

◆Two important properties of multifractals are self-similarity and non-integer

dimension.

◆The singularities of multifractals often vary from point to point. Point-wise

measurements of Lipschitz exponents are not possible because of the finite

numerical resolution.
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Fractal Sets and Self-Similar Functions

◆A set 𝑆 is self-similar if it is the union of disjoint subsets 𝑆1, ⋯ , 𝑆𝑘 that can be

obtained from 𝑆 with a scaling, translation and rotation. This self-similarity

often implies an infinite multiplication of details, which creates irregular

structures

The Von Koch curve:

The fractal set is obtained by recursively

dividing each segment of length 𝑙 in

four segments of length 𝑙/3.

Each division multiplies the length by

4/3, so the limit of these subdivisions is

a curve of infinite length
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The triadic Cantor set

The triadic Cantor set is constructed by recursively dividing intervals of size 𝑙 in

two subintervals of size 𝑙/3 and a central hole.

The iteration begins from 0, 1 . The Cantor set obtained as a limit of these

subdivisions is a dust of points in 0, 1 .
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Fractal Dimension

◆The Von Koch curve has infinite length in a finite square of ℝ2. The usual

length measurement is not well adapted to characterize the topological

properties of fractal curves.

◆Let 𝑆 be a bounded set in ℝ𝑛. We count the minimum number 𝑁 𝑠 of balls of

radius 𝑠 needed to cover 𝑆. If 𝑆 is a set of dimension 𝐷 with a finite length

𝐷 = 1 , surface 𝐷 = 2 , or volume 𝐷 = 3 , then

𝑁 𝑠 ~𝑠−𝐷

𝐷 = − lim
𝑠→0

log𝑁 𝑠

log 𝑠

◆ The capacity dimension 𝐷 of 𝑆 generalizes this result is defined by

𝐷 = − lim inf
s→0

log𝑁 𝑠

log 𝑠
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Fractal Dimension

➢ Example 6.7: The Von Koch curve has infinite length because its

fractal dimension is 𝐷 > 1. We need 𝑁 𝑠 = 4𝑛 balls of size 𝑠 =
3−𝑛 to cover the whole curve, thus,

𝑁 3−𝑛 = 3−𝑛 − log 4/ log 3

At any other scales, the minimum number of balls 𝑁 𝑠 to cover 

this curve satisfies  

𝐷 = − lim inf
s→0

log𝑁 𝑠

log 𝑠
=
log 2

log 3
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Self-Similar Functions

◆Let 𝑓 be a continuous function with a compact support. 𝑓 is self-similar if

there exist disjoint subsets 𝑆1, ⋯ , 𝑆𝑘 such that the graph of 𝑓 restricted to each

𝑆𝑖 is an affine transformation of 𝑓.

This means that there exist a scale 𝑙𝑖 > 1, a translation 𝑟𝑖, a weight 𝑝𝑖, and a 

constant 𝑐𝑖 such that 

∀𝑡 ∈ 𝑆𝑖 , 𝑓 𝑡 = 𝑐𝑖 + 𝑝𝑖𝑓 𝑙𝑖 𝑡 − 𝑟𝑖

The wavelet transform and its modulus maxima of a self-similar function is 

also self-similar. Let 𝑔 be an affine transformation of 𝑓

𝑔 𝑡 = 𝑝𝑓 𝑙 𝑡 − 𝑟 + 𝑐

𝑊𝑔 𝑢, 𝑠 = න
−∞

+∞

𝑔 𝑡
1

𝑠
𝜓

𝑡 − 𝑢

𝑠
𝑑𝑡

𝑊𝑔 𝑢, 𝑠 =
𝑝

𝑙
𝑊𝑓 𝑙 𝑢 − 𝑟 , 𝑠𝑙

Wavelet transform: 

𝑡′ = 𝑙 𝑡 − 𝑟
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Self-Similar Functions

➢ Example 6.10: A devil’s staircase is the integral of a Cantor measure:

𝑓 𝑡 = න
0

𝑡

𝑑𝜇∞ 𝑥

It is a continuous function that increases from 0 to 1 on 0, 1 . The 

recursive construction of the Cantor measure implies that 𝑓 is self-

similar

𝑓 𝑡 = ൞

𝑝1𝑓 3𝑡 if 𝑡 ∈ 0, 1/3

𝑝1 if 𝑡 ∈ 1/3, 2/3

𝑝1 + 𝑝2𝑓 3𝑡 − 2 if 𝑡 ∈ 2/3, 1
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Homework

Chapter 7: 7.12 and 7.14 (a) (b) (A Wavelet Tour of Signal Processing, 3rd

edition)

57



Many Thanks 

Q & A


